Redox-Responsive Controlled Gene Transfection Based on Polymer-Conjugated Magnetic Nanoparticles

Zhang Lei, Jimmy C. Yu

Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China jimyu@cuhk.edu.hk

Abstract

Gene transfection is a non-viral therapy on gene-based diseases by delivering nucleic acids into the nucleus of target cells¹. The efficiency of gene transfection may be enhanced by magnetofection which involves magnetic nanomaterials (MNPs) under a magnetic field². To combine nucleic acids with nanoparticles as well as protect them from degradation after endocytosis, MNPs are usually modified with cationic compounds, such as 25 kDa branched polyethylenimine (PEI) ^{3,4}. After cationic adsorption of plasmid DNAs on the surface of negative charged MNPs, addition of extra free PEI is often required to form a ternary complex for magnetofection⁵. It is because only the cationic compounds could transfer the nucleic acids into the cell nucleus, while the MNPs stay only in the perinuclear region. In this work, a redox-responsive disulfide bond is used to link 25 kDa PEI to MNPs, generating detachable PEIs for both DNA protection and nuclear entry.

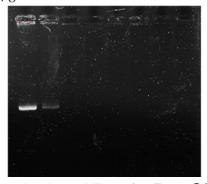
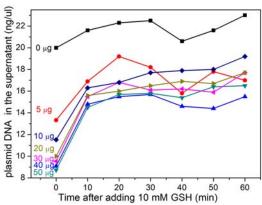
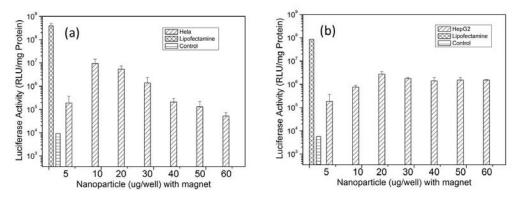
The as-synthesized MNPs were first wrapped in silica with thiol groups on the surface. After thiolexchanging with 2-carboxyethyl-2-pyridyl disulfide, PEI was linked to the carboxyl groups with EDC/NHS. The results of agarose gel electrophoresis indicated that 10 μ g Fe₃O₄ nanoparticles could condense 250 ng pRL-CMV, *i.e.*, renilla luciferase control reporter vectors (**Fig. 1**). Repeated experiments indicated that the condensing nanoparticles were stable for at least one month. The magnetic gene carrier exhibited efficient gene transfection in both Hela and HepG2 cells lines (**Fig. 2**). After addition of 10 mM glutathione (GSH) in phosphate buffer solution (pH=7.4), plasmid DNA was released from the nanoparticles, confirming the redox-responsive property of the modified magnetic nanoparticles (**Fig. 3**).

The confocal microscopy images showed the labeled plasmid DNA located in the nucleus 3h post-transfection, which was more obvious 24 h after transfection (**Fig. 4**). In addition, the yellow colored area indicated a significant portion of PEI co-localized with the red florescent lysotracker, suggesting that the magnetic nanoparticles were taken into the cells via the endocytosis pathway. The co-localization of PEI and plasmid DNA in the nucleus confirmed the nucleic acids were taken in with the help of PEI, while nanoparticles were still in the perinuclear region.

References

- [1] Feldman, A. L.; Libutti, S. K. Cancer (2000), 89, 1181.
- [2] Plank, C.; Schillinger, U.; Scherer, F.; Bergemann, C.; Rémy, J. S.; Krötz, F.; Anton, M.; Lausier, J.; Rosenecker, J. **Biological Chemistry** (2003), 384, 737.
- [3] Wang, X.; Zhou, L.; Ma, Y.; Li, X.; Gu, H. Nano Research (2009), 2, 365.
- [4] McBain, S. C.; Yiu, H. H. P.; El Haj, A.; Dobson, J. Journal of Materials Chemistry (2007), 17, 2561
- [5] Ma, Y.; Zhang, Z.; Wang, X.; Xia, W.; Gu, H.; International Journal of Pharmaceutics (2011), 419, 247.

NP/ug 0 5 10 15 20 30 40 50

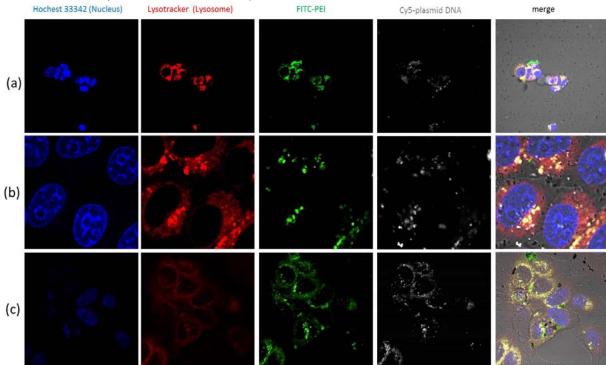

Fig1. Evaluation of the DNA condensing ability of $sFe_3O_4@SiO_2$ -SS-PEI with agarose gel electrophoresis gel assay. Different weight of nanoparticles was incubated with 250 ng pRL-CMV for 20 min at room temperature.

Fig 2. pRL-CMV released at different endpoints after addition of 10mM GSH. Plasmid DNA was mixed with different amount of **sFe**₃**O**₄@**SiO**₂-**SS-PEI**, and magnet was used to separate the condensed DNA on nanoparticles with the DNA in the supernatant.

Fig 3. Evaluation of the transfection efficiency using luciferase assay: (a) in Hela cell line; (b) in HepG2 cell line. The activity was measured at 48h post-transfection.

Fig 4. Tracking of different components in Hela cells 1 h (a), 3 h (b) and 24 h (c) post-magnetofection. Nucleus was labeled by Hochest 33342, lysosome with LysoTracker® Red DND-99, PEI with FITC, and plasmid DNA with Cy5.Merged images with bright field were also shown in the right coloumn.