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Abstract  
 

Electromagnetic scattering from metallic nanometer-scale particles is currently a topic of huge interest. 
The vast majority of these studies are performed on noble-metal nanostructures and are focused on the 
effects on the scattered field due to the nano-confinement of electric fields caused by the excitation of 
localized plasmon resonances (LPRs) in single nanoparticles. 

In the last years the research efforts moved to the study of magnetoplasmonic nanostructures, viz., 
nanostructures that combine magnetic and plasmonic functionalities [1], since they could be the building 
block of a new class of magnetically controllable optical nanodevices for future biotechnological and 
optoelectronic applications. This new research direction has brought forward numerous studies of the 
effects arising from the mutual interplay between magneto-optical (MO) activity and light-matter coupling 
in spatially confined geometries [2-5].  

Moreover, very recently, it was shown how the concerted action of LPRs in single nanoparticles and 
magnetization can be exploited to actively manipulate the reflected light’s polarization (i.e., to induce 
and control Kerr rotation/ellipticity reversal) of pure ferromagnetic nanostructures beyond what is offered 
by intrinsic material properties [6], even if plasma oscillations in ferromagnetic materials typically exhibit 
a stronger damping than in noble metals [7]. While most of the investigations carried out before were 
focused on the achievement of substantial enhancement of magneto-optical Kerr effect (MOKE) or 
Faraday rotation, Bonanni et al. shifted the paradigm of research on magnetoplasmonic functional 
materials by exploiting the phase tunability of the optical polarizability due to the excitation of LPRs in 
single nanoparticles and the simultaneous presence of magneto-optical activity in the same 
ferromagnetic nanostructures.  

Driven by this recent turn of the research direction in pure ferromagnetic plasmonic nanoparticles, a 
formalism to compute the polarizability, as well as far-field MO spectra, of large magnetic ellipsoidal 
nanoelements, i.e., exceeding the Rayleigh limit (electrostatic regime) was developed [8]. This approach 
can be applied to real samples of optically non-interacting flat disks with circular and elliptical sections, 
and size up to a few hundred nanometers, as it is shown in the Scanning Electron Microscope (SEM) 
images in the top panel of Figure 1. The disks are modeled as ellipsoids, like the one pictured in Figure 
2. The calculations performed with our formalism are in excellent quantitative agreement with the 
experimental measurement, as it is shown in the bottom panel of Figure 1 and in Figure 3, with no other 
parameters than material dielectric optical and magneto-optical constants (taken from literature), and 
nanostructure sizes and shapes (experimentally determined). our approach, in spite of its 
approximations, captures the essential physics of the interplay between magneto-optical activity and 
excitation of localized plasmon resonances in single magnetic nanostructures, optically non-interacting, 
of broad fundamental and practical interest. 
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Figure 1. Top panel: Scanning Electron Micrscope images of Ni nanodisks with D = 100 (left) and 160 
nm (right), 30 nm thick. Bottom panel: experimental (left) and calculated (right) transmission spectra. 
Inset: extinction efficiencies. 
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Figure 2. Scheme of a general ellipsoid embedded in a non-magnetic host medium. The ellipsoid is 
under the influence of an acting field E1, and, due to the induced dipole moments, the electric field E2 
inside it changes. 
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Figure 3. Top panel: experimental Kerr angle in P-MOKE configuration, of Ni nanodisks with D = 100 
nm and 160 nm, 30 nm thick. Bottom panel: calculated spectra.  


