Fabrication and Characteristics of Plasmonic Nanopore on the Pyramid
For Ultrafast Genome Sequencing

Seong Soo Choia, T. Yamaguchib, M.J. Parkc

aDepartment of NanoScience, SunMoon University, Ahsan, Chungnam, 336-708 Korea;
bUniversity Instrument Center, SunMoon University, Ahsan, Chungnam
cDepartment of Physics, Korea Military Academy, Seoul,139-799 Korea:
sscphy@paran.com

Recently there have been tremendous interests about the nanopore technology due to urgent demands of the ultrafast DNA sequencing device with less than 24 hour diagnosing time and less than $1000 \text{ demands by NIH, USA. DNA translocation through a natural hemolysin nanopore with electrical signal detection scheme has been successfully carried out by Dr. Bayley and et al [1, 2]. The solid-state nanopore array using SiN and graphene has also been tried to provide the DNA footprints by others. However, the optical detection technique such as SERS can better characterize the DNA. In this report, the optical characteristics of the nanofabricated plasmonic nanopore with its diameter less than 10 nm will be presented. Initially, the oxide aperture was fabricated followed by metal deposition. The metal aperture slit ranging from $\sim 10^0 \text{ nm width to } 10^2 \text{ nm is obtained. Figure 1 shows the differences of the surface morphology of the FESEM from those of } 200 \text{ keV TEM due to the nonuniform cylindrical wall. The } 5\text{keV FESEM imaging and } 200 \text{ keV TEM images present the nonuniform structure of the nanopores. In order to get the uniform cylindrical wall of the nanopore, the } 30 \text{ keV Focused Ga ion beam (FIB) drilling is introduced and the } Au \text{ diameter of } \sim 50 \text{ nm was obtained. In order to better control the size reduction of nanopore less than } 10 \text{ nm, the electron beam annealing technique is introduced. The } Au \text{ pore diameter of } \sim 5 \text{ nm or less is obtained using } 20 \text{ keV electron beam exposure. The probe diameter of the Hitachi S 4800 Type II FESEM is } \sim 1 \text{ nm and has a maximum current of } \sim 2 \text{ nA. The temperature rise due to electron beam exposure is linearly dependent upon the electron energy and the current, and inversely proportional to thermal conductivity of the materials [3]. The successive size reduction of the nanopore was also observed for } 200 \text{ keV using JEOL 2010 TEM [Fig. 2], [Fig.3]. This can be attributed to melting of the } Au \text{ membrane due to electron beam heating effect. In addition, the optical characteristics of the fabricated } Au \text{ nanopore were measured using Nikon TE inverted microscope with tungsten halogen lamp and Princeton instrument/Acton (Pixie:400, spectroscopic-format CCD). The increasing optical transmittance with decreasing the nanopore size is shown in Fig.4. This extraordinary transmission can be attributed to the optical vortexed photonic flow into the decreasing } Au \text{ nanoaperture[4]. The nanofabricated device can be utilized as single molecule nanobio sensor and genome sequencing.}

References

Acknowledgements

This work has been supported by the Korean Research Foundation under the National Research Laboratory Project, GRL Project (Nanophotonic Integrated Circuits for Ultrafast Processing, K-20815000003), and Science Research Center project (Center for Subwavelength Optics).
Figures:

Figure 1. Nanopore images of the samples. The images of the 5 keV SEM for the samples AO5 and A10 do not present different images from the images of 200 keV TEM images. This phenomena can be attributed to the nonuniform cylindrical structure of the nanopore, and the different sampling depth for different electron energy of FESEM, and due to the different imaging technique of TEM from that of the SEM.

Figure 2. Dynamic sequence of nanopore closing using electron beam exposure with 200 keV TEM.(Jeol 2010).

Figure 3. Optical transmittance spectra through the Au nano-channel on the pyramid. With decreasing the size from 6830, 580, and 20 nm, the peak transmittance has been increased to 252, 3780, and 13483, respectively. The peak position was also shifted from input peak 678 nm to output peak 550 nm due to surface plasmon resonance.