Probing confined photons in nanoscale disordered media from inside

Rémi Carminati

Institut Langevin, ESPCI ParisTech, CNRS
Paris, France

remi.carminati@espci.fr
People involved

"Physical optics and wave theory" group (ESPCI)

Romain PIERRAT
CNRS researcher

Etienne CASTANIE
PhD student

Alexandre CAZE
PhD student

Valentina KRACHMALNICOFF
Post-doc

Mohamed ELABED
Associate researcher

Rémi VINCENT
Post-doc (until July 2011)

Collaborations

Yannick DE WILDE
(ESPCI)

Riccardo SAPIENZA
Niek van HULST
(ICFO Barcelona, Spain)
Coupling spontaneous emission with disorder

Fluorescence of nanosources in disordered media (photonic materials, imaging)

Nanophotonics - Light concentration on the nanoscale ("hot spots")

Novel light sources (e.g. random lasers)

Fundamental studies of light transport in scattering media (e.g. probing Anderson localization)
Outline

Spontaneous emission and plasmonics: From nano-antennas to disordered systems

Probing near-field interactions in volume disordered systems
Spontaneous decay rate

- Probability of being excited at time t: $P(t) \propto \exp(-\Gamma t)$
- Lifetime of excited state: $\tau = 1/\Gamma$

- The spontaneous decay rate depends on the environment
- Perturbation theory:

$$\Gamma = \frac{2}{\hbar} \mu_0 \omega_{ge}^2 \left| p_{ge} \right|^2 \text{Im} \left[\mathbf{u} \cdot \mathbf{G}(\mathbf{r}_0, \mathbf{r}_0, \omega_{ge}) \mathbf{u} \right]$$

Drexhage (1970)
Chance, Prock, Silbey (1978)

Decay rate and LDOS

\[\Gamma = \frac{2}{\hbar} \mu_0 \omega^2 |p_{ge}|^2 \text{Im}[u \cdot G(r_0, r_0, \omega) u] \]

is also very often written as (Fermi golden rule)

\[\Gamma = \frac{\pi \omega}{3 \varepsilon_0 \hbar} |p_{ge}|^2 \rho_u(r_0, \omega) \]

\[\frac{\Gamma}{\Gamma_0} = \text{change in the LDOS} \]
Interaction with a single nanoparticle

Silver nanoparticle
Diameter 10 nm

\[\Gamma = \Gamma_R + \Gamma_{NR} \]

Photon emission
Absorption

Leading contributions at short distance

\[\Gamma_R \propto \frac{1}{(kz)^3} \]

\[\Gamma_{NR} \propto \frac{1}{(kz)^6} \]

Nanoscale controlled experiments on single emitter

S. Kühn et al., PRL 97, 017402 (2006)

M. Busson, S. Bidault et al. (2011)
Peculiar optical properties of disordered metal films

Semi-continuous gold films on a glass substrate

<table>
<thead>
<tr>
<th>Filling fraction</th>
<th>TEM images</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%</td>
<td>![TEM image]</td>
</tr>
<tr>
<td>49%</td>
<td>![TEM image]</td>
</tr>
<tr>
<td>67%</td>
<td>![TEM image]</td>
</tr>
<tr>
<td>79%</td>
<td>![TEM image]</td>
</tr>
<tr>
<td>82%</td>
<td>![TEM image]</td>
</tr>
<tr>
<td>89%</td>
<td>![TEM image]</td>
</tr>
<tr>
<td>99%</td>
<td>![TEM image]</td>
</tr>
</tbody>
</table>

V.M. Shalaev, Nonlinear Optics of Random Media (Springer, 2000)
Near-field intensity distribution - « hot spots »

Surface (TEM image)
Gold on glass substrate

Near-field intensity (SNOM)

$\lambda = 720 \text{ nm}$

Localized and delocalized modes

Hot-spots modes on a fractal disordered film

Localized Luminous

Delocalized Luminous

Delocalized Dark

Localized Dark

« Inhomogeneous localization »

Stockman, Faleev, Bergman, PRL 87, 167401 (2001)
LDOS distributions on disordered metal films

Statistical distributions of Γ (LDOS)

- $f = 30\%$
- $f = 82\%$

$\lambda = 605\text{ nm}$
LDOS fluctuations

\[\frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} - 1 \]

Fractal and Euclidian clusters

\[f = 82\% \]

The peak reveals modes localization

\[\frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} - 1 \]

The peak in the LDOS fluctuations is the signature of localized plasmon modes

Mode localization length (inverse participation ratio)

\[R_{IP} = \frac{\int |E(r)|^4 \, d^2r}{\left[\int |E(r)|^2 \, d^2r \right]^2} \approx \frac{1}{\xi^2} \]

\[R_{IP} \approx \frac{1}{S \langle \rho \rangle^2} \]

[1/2 \langle \rho^2 \rangle \approx \frac{1}{\xi^2}]
Numerical simulations

Experiment

![Image of experimental setup](image1)

<table>
<thead>
<tr>
<th>Occurrences</th>
<th>Γ/Γ_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Référence : billes sur verre</td>
<td></td>
</tr>
<tr>
<td>$\text{SiO}_2 : 80 \text{ nm}$</td>
<td></td>
</tr>
<tr>
<td>$\text{SiO}_2 : 40 \text{ nm}$</td>
<td></td>
</tr>
<tr>
<td>$\text{SiO}_2 : 20 \text{ nm}$</td>
<td></td>
</tr>
</tbody>
</table>

Numerical simulations

(volume integral equation + moment method)

![Image of numerical simulation results](image2)

Castanié, Krachmalnicoff, Cazé, Pierrat, De Wilde, Carminati (2011)
Radiative and non-radiative decays can be separated

\[\frac{\Gamma}{\Gamma_0} \]

\[\frac{\Gamma_{NR}}{\Gamma_0} \]

\[\frac{\Gamma^R}{\Gamma_0} \]

Castanié, Krachmalnicoff, Cazé, Pierrat, De Wilde, Carminati (2011)
Mapping radiative and non-radiative contributions

\[\frac{\Gamma}{\Gamma_0} \]

\[\frac{\Gamma_{NR}}{\Gamma_0} \]

Non-radiative modes

Radiative modes

Castanié, Krachmalnicoff, Cazé, Pierrat, De Wilde, Carminati (2011)
Spontaneous emission and plasmonics: From nano-antennas to disordered systems

Probing near-field interactions in volume disordered systems
LDOS statistics from « numerical experiments »

- Resonant point scatterers (« atoms »)
- $\lambda \approx 630$ nm
- Cluster size $R = 1.2 \, \mu m$
- Exclusion volume $R_0 = 50$ nm

Statistical distribution of decay rate Γ (LDOS)
Long tail: Near-field interactions

Multiple scattering and collective interactions

\[P(\Gamma/\Gamma_0) \]

\[\Gamma/\Gamma_0 \]

Near-field interaction with one scatterer

\[\propto \Gamma^{-3/2} \]

Near-field interaction with more than one scatterer

One-scatterer cut-off

Broad - asymmetric distribution of decay rates (LDOS)

Experiments: Sapienza, Bondareff, Habert, van Hulst, ICFO (Barcelona, Spain)

ZnO powder
Polydisperse particles
(140 ± 50 nm)

Photon mean free path
\[\ell = 0.9 \, \mu m \]
\[k \ell = 9.4 \]

LDOS statistics probed by lifetime of nanosources (24 nm fluorescent beads)

Sapienza, Bondareff, Habert, Pierrat, Carminati, van Hulst, PRL 106, 163902 (2011)
Long tail controlled by near-field interactions

Tail results from near-field interactions

High Purcell factors (rare events)

\[
\frac{\Gamma_{\text{max}}}{\Gamma_{\text{peak}}} \approx 9 \quad \frac{\Gamma_{\text{max}}}{\Gamma_0} \approx 15
\]
Summary

- Photonic modes in complex systems can be probed with LDOS statistics

 Evidence of spatially localized modes
 Radiative versus non-radiative decay

- Disordered photonic materials can lead to substantial modifications of spontaneous emission

 Rare events can produce substantial changes
 Sensitive probe of nanoscale environment