High photocatalytic activity of Zn_2SnO_4 among various structures of $\text{Zn}_{2x}\text{Sn}_{1-x}\text{O}_2$ prepared by a hydrothermal method

Azam Anaraki Firooz, Ali Reza Mahjoub, Abbas Ali Khodadadi, Maryam Movahedi
Department of Chemistry, Tarbiat Modares University, 14115-175, Tehran, Iran

azam_a_f@yahoo.com

In recent years, heterogeneous photocatalysis has received increasing attention for environmental applications such as air purification, water disinfection, hazardous remediation and water purification [1, 2]. The high photocatalytic degradation of semiconductors, such as TiO_2 and ZnO has attracted extensive attention of many researchers [3].

In this paper, different structures and morphologies of SnO_2 containing various amounts of ZnO, was synthesized via a hydrothermal method (without any template), characterized by scanning electron microscopy and powder X-ray diffraction, and used for photocatalytic degradation of Congo red. The results revealed that using different ratios of $\text{Zn}^{2+}/\text{Sn}^{2+}$ affects the phase and morphology of the $\text{Zn}_{2x}\text{Sn}_{1-x}\text{O}_2$ compounds (see Fig. 1). This type of morphology tailoring of SnO_2 nanoparticles, ZnO doped SnO_2 porous structure, ZnSnO_3 flower-like, and Zn_2SnO_4 octahedrals was possible, by varying the $\text{Zn}^{2+}/\text{Sn}^{2+}$ ratio of 0, 1/10, 1/5 and 1/1, respectively. These products could be formed by decomposition of ZnSn(OH)_6 phase. Zn_2SnO_4 with octahedral morphology exhibited a significant enhancement of photocatalytic activity toward degrading Congo red, as compared to other samples. This could be attributed to enhanced oxygen vacancies and crystallite defects formed by substitution of Zn^{2+} in the lattice of SnO_2, revealed in photoluminescence measurements (see Fig. 2).

References

Figures

Fig. 1: Figure 2: SEM images of samples, a) SnO_2 nanoparticles, b) ZnO doped SnO_2 porous structure, c) ZnSnO_3 flower-like d) Zn_2SnO_4 octahedral.

Fig. 2: The PL spectra of the samples.