Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles

Òscar Iglesias
Xavier Batlle and Amílcar Labarta

Departament de Física Fonamental and Institut de Nanociència i Nanotecnologia
Universitat de Barcelona, Spain

oscar@ffn.ub.es
http://www.ffn.ub.es/oscar
II. WHAT IS EXCHANGE BIAS

FM film on top of AFM

I. Schuller, MRS Bulletin, Sept. 2004

Displacement of loop after FC due to coupling of the FM to the AFM

Exchange Bias Basics

\[H_{eb} = \frac{(H^+_C + H^-_C)}{2} \]

\[H_C = \frac{(H^+_C - H^-_C)}{2} \]
I. INTRODUCTION

Microscopic Origin of Exchange Bias?

- Close contact between FM and AFM phases

Microscopic Origin of Exchange Bias?

- Proximity effects
- Phenomena at interface (and bulk?)

Atomic details are important

- Local magnetic moments, μ_i
- Exchange constants, J_{ij}
- Anisotropy constants, K_i
- Lattice structure, r_{ij}

Modeling Exchange Bias
II. WHAT IS EXCHANGE BIAS

KEY INGREDIENTS

• Pinned Antiferromagnet \(\Rightarrow \)
 High anisotropy \(K_{AFM} \)

• Exchange coupling at the interface \(\Rightarrow \)
 FM or AFM

• Uncompensated moment of the AFM \(\Rightarrow \)
 Loop displacements

OPEN QUESTIONS

• Nature of interface interaction.

• Quantifying the loop shifts.

• Reversal mechanisms.

• Hysteresis loop asymmetry.

MODELS

• Meiklejohn, Bean (1956) \(\Rightarrow \)
 Uncomp. Interface
 Too large shift

• Malozemoff (1987) \(\Rightarrow \)
 Random field
 Interf. roughness

• Mauri (1987) \(\Rightarrow \)
 Interface AF Domain Wall

• Koon (1997) \(\Rightarrow \)
 Spin-flop coupling

• Schulthess, Butler (1998) \(\Rightarrow \)
 Magnetostatic interactions

• Kiwi (1999) \(\Rightarrow \)
 Frozen interface model

• Stiles, McMichael (1999) \(\Rightarrow \)
 Polycrystalline interface
 AFM grains

• Nowak, Usadel (2000) \(\Rightarrow \)
 Domain state model
 Diluted AFM
III. EB PHENOMENOLOGY

Experimental systems showing EB

- Bilayered thin films
- AF on top of a FM material: FeF₂/Fe, MnF₂/Fe, CoO/Py...
- Ferrimagnetic and AF oxide NPs
- NiO, CoO, CuO, FeOOH...
- NiFe₂O₄, γ-Fe₂O₃, LaCaMnO₃,...
- FM particles embedded in AFM matrix
- Co in CoO, Fe in FeCl₂, Fe in FeF₂,...
- Core/Shell NPs
- Usually FM core + AF shell: CoO/Co, Fe/FeO...

Review Article:
Exchange Bias phenomenology and models of core/shell nanoparticles
O. Iglesias, A. Labarta and X. Batlle
J. Nanoscience and Nanotechnology 8, 2761-2780 (2008)
Preprint: Cond-Mat/0607716

W. H. Meiklejohn and C. P. Bean
Phys. Rev. 102, 1413 (1956); 105, 904 (1957)
III. EB PHENOMENOLOGY

Phenomenology in Core/Shell NPs

Shifted loops, increased H_c
- V. Skumryev et al.

Increased T_B
- V. Skumryev et al.
- Co/CoO

Field cooling dependence
- Del Bianco et al.
 - PRB *70*, 052401 (2004)
- Fe/FeO

Particle size dependence
- Gangopadhyay S et al.
 - JAP *73*, 6964 (1993)

Vertical shifts
- Zhou et al.
- Co/CoO

Co/CoO
III. EB PHENOMENOLOGY

Oxidation state

Tracy et al.
PRB 72, 064404 (2005)

Co/CoO

Passamani et al.
JMMM 299, 11 (2006)

Fe/MnO₂

Glassy dynamics

Tracy et al.
PRB 72, 064404 (2005)

Co/CoO

Zheng et al.
PRB 69, 214431 (2004)

Fe/γFe₂O₃

Fiorani et al.
PRB 73, 092403 (2006)

Fe/FeO

Training effects

Passamani et al.
JMMM 299, 11 (2006)

Fe/MnO₂
III. EB PHENOMENOLOGY

EB in Inverted core/shell NPs

\[R_{\text{Total}} = 12a, \quad R_{\text{Shell}} = 3a \]

AFM Core

MnO

FiM Shell

\((\text{Mn}_3\text{O}_4)\)

Doubly inverted Core/Shell NPs

- Composition: AFM Core + FiM Shell
- Anisotropy: \(K_{\text{AF}} >> K_{\text{FiM}}\)
- Ordering Temp.: \(T_N = 118 K > T_C = 43 K\)

Unusual
III. EB PHENOMENOLOGY

➢ Key Questions in EB Phenomenology

• Interplay with Surface Effects and Interparticle Dipolar Interactions ⇒

• Magnitude of the EB and coercive fields ⇒

• Distributed properties and role of T_B ⇒

• EB vs. Minor loop Effects ⇒
IV. MICROSCOPIC MODEL

Model for a Core/Shell NP

Core: ferromagnetic (Co)
Shell: antiferromagnetic (oxide)
Interface: spins at C/Sh with nearest neighbors at the Sh/C

In a core/shell particle, the interface is not well-defined as in bilayers.
Interface spins are not compensated nor uncompensated.

O. Iglesias et al., PRB 72, 21240 (2005)

Core: ferromagnetic (Co)
Shell: antiferromagnetic (oxide)

Monte Carlo simulation,
Metropolis algorithm for continuous spins
$S_i =$ Heisenberg Spins in simple cubic lattice

$H / k_B = - \sum_{\langle i,j \rangle} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j - \sum_i K_i \left(\mathbf{S}_i \cdot \hat{n}_i \right)^2 - \mathbf{h} \cdot \sum_i \mathbf{S}_i$

Exchange (n.n.) interaction:
- $J_C > 0$ (FM) at the Core
- $J_S < 0$ (AF) at the Shell
- $J_{\text{Int}} \geq 0$ (AF or FM) at the Interface
- J_{Int} variable

Anisotropy energy
- $n_i =$ z axis, uniaxial anisotropy
- K_C at the Core
- $K_S > K_C$ at the Shell

Zeeman energy
- \mathbf{h} along z axis
- Magnetic field is in temperature units: $h = \mu H / k_B$
Results: ZFC-FC Loops

- Loop after FC is displaced towards negative field direction with respect to ZFC loop.
- Notice also the vertical shift of the shell magnetization.

- Shell behavior is dictated by coupling with the core through J_{int}.
- Changing the sign of the interface coupling influences the net magnetization at the interface.
Results: Field Cooling

After FC from high temperature $T > T_N$:

- Core with FM order.
- Shell with AF order.
- Interface spins have net magnetization along z-axis.

COLOR CODE:
- **dark blue** ⇒ core
- **green** ⇒ shell
- **yellow (cyan)** ⇒ shell (core) interfacial spins

IV. MICROSCOPIC MODEL

Results: Increasing anisotropy

Increasing the anisotropy of the AF shell

For low K_S, shell spins are dragged by core spins during reversal.

There is a minimum value of K_S for observing EB.

h_c does not change appreciably.

IV. MICROSCOPIC MODEL

Results: h_{EB} and H_c

Role of the increasing Interface AF Coupling J_{int}

$R = 12\alpha$, $R_{Sh} = 3\alpha$, $K_{Sh} = 10 \ K_C$

- H_C decreases
 - Coupling of the core to the shell helps the reversal

- H_{EB} increases
 - Linear variation with J_{int} due to the higher local exchange field acting on the core spins.

IV. MICROSCOPIC MODEL

Microscopic Origin of EB

Spins at the interface, two contributions:

Irreversible spins: pinned through the hysteresis loop. Small fraction!

Reversible spins: reverse with the core due to J_{Int}, do not cause EB.

$H_{eb} = J_{\text{Int}} \frac{M_{\text{Int}}^+ + M_{\text{Int}}^-}{2}$

$M_{\text{Int}}^+ = \sum_{i \in \{Sh, \text{Int}\}} z_i S_i^z$

IV. MICROSCOPIC MODEL

Results: Loop asymmetries

Increasing interface exchange coupling

\[J_{\text{Int}} = -0.2 \quad J_{\text{Int}} = -0.5 \quad J_{\text{Int}} = -1 \]

Loop asymmetry is induced by the increasing interface coupling

\[M_n = \sum_i \left| \vec{S}_i \cdot \hat{n}_i \right| \quad \text{M}_n \Rightarrow \text{Magnetization projection along easy-axis} \]
Results: Reversal Mechanisms

Loop asymmetry is due to different reversal mechanisms and increases with J_{int}.

COHERENT ROTATION

NUCLEATION + PROPAGATION

Descending branch

Increasing branch

$h = -2.2$

$h = -2.3$

$h = -2.4$

$h = -2.5$

$h = -2.6$

$h = 0.3$

$h = 0.4$

$h = 0.5$

$h = 0.6$

$h = 0.7$
Results: Vertical Shifts

Microscopic origin of the vertical shift is the different reversal mechanisms on the two loop branches.

Results: Particle Size Dependence

- Oscillatory dependence on particle size.
- \(h_{eb} \) shows a trend to decrease as size increases as in experiments:
 \[
 h_{eb} \approx \frac{1}{R_{Core}}
 \]

Results: Temperature and h_{FC} dependence

- h_{eb} decreases with T and vanishes above 6 K.
- h_{C} decreases also with T, but presents a local maximum at the vanishing h_{eb} temperature.

1. **Monte Carlo simulations** at the *atomistic* level are useful to understand microscopic origin of *magnetic phenomenology of nanomagnets*.

2. The **microscopic origin** of EB has been unveiled and quantified. We have shown that \(h_{EB} \) is due to the exchange field acting on the particle core, generated by the net magnetization of *uncompensated of shell spins at the interface*.

3. **Asymmetry** between the descending and ascending branches of the loops has been observed which increases with the strength of the interface coupling \(J_{\text{Int}} \). **Different reversal mechanisms**: (uniform rotation, nucleation-propagation) are responsible for it.

4. Vertical shifts, particle size, cooling field and temperature dependence can be understood from the simulation results.

5. Surface and interaction effects compete with EB and complicate interpretations.

6. Further simulation studies of interacting core/shell particles with internal structure and particles embedded in a matrix are under progress.

More up to date information at the web page: http://www.ffn.ub.es/oscar